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Abstract

This paper is a review of sorting on several well-known graphs by adjacent swaps using permutation
groups. Given a graph with a line, star, complete, or ring topology having n vertices (numbered from
1 to n), we place n objects (numbered from 1 to n) arbitrarily in such a way that exactly one object is
placed on each vertex. A sorting procedure is intended to reach the target object placement in which
each object i is placed on vertex i for 1 ≤ i ≤ n. Now, the problem is to find a minimum-length
sequence of adjacent swaps needed to sort the initial arrangement of n objects on n vertices in the graph,
which employs a known permutation sorting or permutation decomposition procedure using a generating
set of a symmetric group Sn. This paper reviews the existing permutation sorting and permutation
decomposition procedures for sorting on graphs with line, star, complete, and ring topologies by adjacent
swaps. We also provide concrete examples and our own implementation for this review paper in order to
describe how abstract group-theoretical methods are used to find a minimum-length sequence of adjacent
swaps needed to sort objects on those graphs.

Keywords: adjacent swap; object sorting; permutation sorting; permutation group; permutation
decomposition.

1 Introduction

Given a graph with a line, star, complete, or ring topology having n vertices, consider that n objects
(numbered from 1 to n) are placed on n vertices (numbered from 1 to n) in the graph in such a way
that exactly one object is placed on each vertex. This is represented by a bijective assignment between
n objects and n vertices, which in turn can be represented by a permutation (i.e. a permutation of n
objects). A permutation of n objects can be considered as an element of symmetric group on n letters,
denoted by Sn [1–3]. Using swaps of objects between two vertices, the goal of a sorting procedure is to sort
those objects so that the permutation corresponding to the target assignment is the identity permutation.
Sorting plays an important role in algorithm design [4–6], robotics [7–9], graph theory [10–12], genomic
rearrangements [13–16], and so on. In particular, sorting objects (e.g. tokens, boxes, markers, tasks, etc.)
on graphs has been researched extensively in recent years [7,8,10,17–19]. This review paper is concerned with
swaps of objects on adjacent vertices in several well-known graphs, where a swap depends on a graph with a
given topology. The basic technique used here is that if a permutation p = i1 · · · in ∈ Sn denotes an initial
bijective assignment between n objects and n vertices, the right multiplication of p by transposition (s t) ∈ Sn

represents a swap of the object on vertex s and vertex t. Now, the problem of finding a minimum-length
sequence of swaps needed to sort n objects is reduced to find a minimum-length permutation decomposition
of the inverse of permutation p ∈ Sn using transpositions from the set T = {(i j) : 1 ≤ i < j ≤ n}.
However, if only swaps on adjacent vertices in a graph are allowed, not all transpositions can be used, but
transpositions in a chosen generating set of Sn can be used. This generating set of Sn relies on how vertices
are interconnected by a graph with a given topology. In [19] Akers and Krishnamurthy proposed a puzzle
consisting of n markers on n vertices in an arbitrary transposition tree [20] with n vertices, which is basically
the problem of sorting an initial arrangement of n markers on n vertices in a tree with n vertices by adjacent
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swaps. They also discussed some tight upper bounds of the minimum number of adjacent swaps needed to
sort n markers on n vertices in a certain type of transposition trees [20] with n vertices. In [18] Kim discussed
the problem of finding a minimum-length sequence of adjacent task swaps needed from a (bijective) source
task assignment to reach a (bijective) target task assignment on a task swapping graph, which is reduced to
find a minimum-length sequence of adjacent swaps needed to sort tasks on a task swapping graph. In [10]
Yamanaka et al. showed that sorting an initial arrangement n tokens on n vertices in a simple and connected
graph of order n by adjacent swaps is solvable in O(n2) token swaps. They also showed a polynomial-time
2-approximation algorithm for the problem of finding the minimum number of adjacent swaps needed to sort
n tokens on n vertices in a tree with n vertices.

The problem of sorting n objects on n vertices by using the minimum number of adjacent swaps in a
graph of order n with a line, star, complete, or a ring topology can also be viewed as the problem of finding a
minimum-length generator sequence [21] of p−1 ∈ Sn with respect to the corresponding generating set of Sn,
where a minimum-length generator sequence of a permutation is well-studied in permutation group theory.
The minimum-length generator sequence problem is NP-hard in general, but the problem is polynomial for
some generating sets and their generated permutations groups.

In this review paper we focus on polynomial-time exact algorithms for sorting by swaps of objects on
adjacent vertices in graphs with line, star, complete, and ring topologies. In the remainder of this paper by
“sorting objects on a graph” we mean sorting an arrangement of n objects on n vertices in a simple and
connected graph of order n. We also assume that both n objects and n vertices in a graph are numbered
from 1 to n in such a way that each object is assigned to exactly one vertex, allowing an arrangement of n
objects on n vertices to be represented by a permutation, i.e., a permutation p ∈ Sn of n objects.

The remainder of this review paper is organized as follows. Section 2 gives a brief overview of the
necessary background used in this review paper. Sorting objects on graphs with line, star, complete, and
ring topologies by means of a minimum-length sequence of adjacent swaps is discussed in Section 3. The
object sorting procedures described in this section are direct consequences of the known permutation sorting
and permutation decomposition (or permutation factorization) methods used in permutation group theory, in
which we simply apply them to find a minimum-length sequence of adjacent swaps needed to sort objects on
graphs with some well-known topologies. We also discuss upper bounds of the minimum number of adjacent
swaps needed to sort objects on those graphs in this section. Section 4 contains a discussion of Cayley graphs
for describing the possible arrangements of objects at the vertices of graphs with line, star, complete, and
ring topologies. We also discuss the word metric on a Cayley graph in this section, in order to describe the
distance between two arrangements of objects at the vertices of the associated graph. Section 5 illustrates
some applications of the object sorting procedures discussed in Section 3 to genomic rearrangements. In
particular, we discuss sorting permutations (or circular permutations) by reversals of length 2, sorting by
prefix-exchanges, and sorting by block-interchanges of length 1 in genomic rearrangements as applications
of the object sorting procedures described in Section 3. Discussion and a survey of related works are given
in Section 6. In Section 7 we give a brief description of our implementation. We provide concluding remarks
in Section 8.

2 Preliminaries

This section describes the necessary background used in this review paper. The definitions and results used
in this section are found in [1, 3–5,10,18–20,22–28].

A group (G, · ) is a nonempty set G, closed under a binary operation · : G × G → G, such that the
following axioms are satisfied: (i) (a · b) · c = a · (b · c) for all a, b, c ∈ G; (ii) there is an element e ∈ G, called
an identity of G, such that for all x ∈ G, e · x = x · e = x; (iii) for each element a ∈ G, there is an element
a−1 ∈ G such that a ·a−1 = a−1 ·a = e. If H is a nonempty subset of G and is also a group under the binary
operation · in G, then H is called a subgroup of G.

Let In = {1, 2, . . . , n}. The group of all permutations In → In is called the symmetric group on n letters
and denoted Sn, in which the binary operation of Sn is function composition. A permutation group is a
subgroup of some Sn.

Let i1, i2, . . . , in be distinct elements of In = {1, 2, . . . , n}. Then, a permutation that maps 1 7→ i1, 2 7→

i2, . . . , n 7→ in can be written as the two-line notation

(
1 2 · · · n
i1 i2 · · · in

)
∈ Sn or the one-line notation
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i1 i2 · · · in ∈ Sn.
Let i1, i2, . . . , ir (r ≤ n) be distinct elements of In = {1, 2, . . . , n}. Then, (i1 i2 · · · ir) is defined as the

permutation that maps i1 7→ i2, i2 7→ i3,. . . , ir−1 7→ ir and ir 7→ i1, and every other element of In maps onto
itself. (i1 i2 · · · ir) is called a cycle of length r or an r-cycle. A 2-cycle is called a transposition. A 1-cycle is
called a fixed point.

Every permutation in Sn can be written as a product of disjoint cycles. It can also be written as a product
of (not necessarily disjoint) transpositions. For example, p = 5 4 3 6 1 2 ∈ S6 is written p = (1 5)(3)(2 4 6) as
a product of disjoint cycles and p = (1 5)(2 6)(2 4) as a product of transpositions. Unless otherwise stated,
we omit fixed points in a product of disjoint cycles, i.e., p = (1 5)(2 4 6).

Let G be a group and let si ∈ G for i ∈ I. The subgroup generated by S = {si : i ∈ I} is the smallest
subgroup of G containing the set S. If this subgroup is all of G, then S is called a generating set of G.

A (right) action of a group G on a set X is a function X×G→ X (usually denoted by (x, g) 7→ xg) such
that for all x ∈ X and g1, g2 ∈ G: (i) xe = x, where e is the identity element of G; (ii) x(g1g2) = (xg1)g2.
When such an action is given, we say that G acts (right) on the set X. If X is G as a set, we say that G
acts (right) on itself.

A minimum-length generator sequence for permutation p of a permutation group G using the generating
set S is a minimum-length sequence consisting of generators in S whose composition is p.

Let S be a generating set of Sn. A permutation decomposition of p ∈ Sn of length l using the generating
set S is a product p = s1 · · · sl where each si ∈ S (1 ≤ i ≤ l).

Let G be a finite group and S be a generating set of G. Then, Cay(G,S) denotes the Cayley graph of G
with the generating set S, where the set of vertices V of Cay(G,S) corresponds to the elements of G, and the
set of edges E of Cay(G,S) corresponds to the action of generators, i.e., E = {< x, y >g: x, y ∈ G and g ∈
S such that y = xg}.

Recall that the diameter of a connected graph is the length of the “longest shortest path” between two
vertices of the graph. Let I denote the identity element of G. The diameter of Cay(G,S) is an upper bound
of distance d(σ, I) from an arbitrary vertex σ to vertex I in Cay(G,S), which is an upper bound of the
lengths of minimum-length generator sequences for permutations in G using the generating set S.

Consider the following known generating sets of Sn: T1 = {(i i+1) : 1 ≤ i < n}, T2 = {(1 i) : 2 ≤ i ≤
n}, T3 = {(i j) : 1 ≤ i < j ≤ n}, and T4 = T1 ∪ {(1n)}.

The Cayley graph generated by T1 is called the bubble-sort graph BSn, by T2 is called the star graph
STn, by T3 is called the complete transposition graph CTn, and by T4 is called the modified bubble-sort graph
MBSn. The diameters of BSn, STn, CTn, and MBSn are n(n − 1)/2, b3(n − 1)/2c, n − 1, and bn2/4c,
respectively [20,29].

The inversion number of p is defined as |{(i, j) : i < j, p(i) > p(j)}|. The maximum inversion number of
permutations of n elements is n(n− 1)/2, which corresponds to permutation n n− 1 · · · 2 1.

A displacement vector d = (d1, . . . , dn) of a circular permutation p ∈ Sn (n ≥ 3) is described as fol-
lows. We assume that positions of a circular permutation p ∈ Sn are labelled clockwise starting from 1
(corresponding to the position of the first element of p) to n (corresponding to the position of the last
element of p). Note that position 1 and position n are adjacent in a circular permutation p ∈ Sn. Each
component di in d for a circular permutation p is defined as di = j − i, where p(j) = i for 1 ≤ i, j ≤ n.
Any displacement vector d = (d1, . . . , dn) satisfies

∑n
i=1 di = 0. In particular, each di = 0 if d is a dis-

placement vector of the identity permutation of Sn. For example, a displacement vector of a circular
permutation p = 6 3 2 4 5 8 1 7 ∈ S8 is (6, 1,−1, 0, 0,−5, 1,−2). Let du be the maximum-valued compo-
nent of a displacement vector d of a circular permutation p ∈ Sn, and dv be the minimum-valued com-
ponent of the displacement vector d. In case du − dv > n, both du and dv are renewed as du − n and
dv + n, respectively. This transformation is called the strictly contracting transformation. If a displace-
ment vector d admits no strictly contracting transformation, a displacement vector d is called stable, de-
noted by d̄. For example, the maximum-valued and minimum-valued component of displacement vector
d = (6, 1,−1, 0, 0,−5, 1,−2) of circular permutation p = 6 3 2 4 5 8 1 7 ∈ S8 are d1 = 6 and d6 = −5, respec-
tively. Since d1 − d6 = 11 > 8, both d1 and d6 are renewed as d1 = 6 − 8 = −2, and d6 = −5 + 8 = 3.
This process continues until the stable displacement vector of d is found, i.e., no pair of the maximum-
valued component du and the minimum-valued component dv of d admits du − dv > 8. Now, we see that
d̄ = (−2, 1,−1, 0, 0, 3, 1,−2). Based on the stable displacement vector d̄, the inversion number Ī(d̄) is defined
as Ī(d̄) = |{(i, j) : (i+ d̄i > j+ d̄j)∨ (i+ d̄i +n < j+ d̄j), 1 ≤ i < j ≤ n}|, which is the minimum length of a
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permutation decomposition of p ∈ Sn using the generating set T = {(i i+1) : 1 ≤ i < n} ∪ {(1n)}. We say
that the above inversion number for a circular permutation as the c-inversion number. Let path(i) denote
the path from position i to position k on which element i is located in a circular permutation p ∈ Sn, which
is uniquely determined by its stable displacement d̄. Each |d̄i| in d̄ is interpreted as the length of path(i),
where d̄i is signed positive to denote that path(i) is directed clockwise and signed negative to denote that
path(i) is directed counterclockwise.

Theorem 2.1 ( [21,26]). (a) Let p ∈ Sn be a permutation. The minimum number of adjacent swaps needed
to sort p is its inversion number.
(b) Let q ∈ Sn be a circular permutation. The minimum number of adjacent swaps needed to sort q is its
c-inversion number.

When considering a swap of objects on vertices in a simple and connected graph of order n (i.e. a graph
having n vertices), a swap with swap distance k (1 ≤ k ≤ n) is referred to a swap of objects on vertices
whose distance is k in a graph. A swap with swap distance 1 is called an adjacent swap.

A graph with a line topology is a simple graph in which each vertex is connected to exactly two neighboring
vertices other than the two end vertices that are connected to only one neighboring vertex.

A graph with a star topology is a simple graph consisting of a centralized vertex and other vertices in
which the centralized vertex connects directly to other vertices and any two vertices except the centralized
vertex have no direct connection between each other.

A graph with a complete topology is a simple graph in which every pair of vertices is adjacent.
A graph with a ring topology is a simple cycle graph in which each vertex has direct connections with

exactly two other vertices in the topology.
Throughout this review paper we assume that each graph is undirected, simple, and connected having at

least three vertices.

3 Adjacent swap-based sorting methods for graphs with line, star, complete,
and ring topologies
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Fig. 1. Sorting eight objects on a graph with a line topology.

We first consider object sorting on a graph with a line topology using adjacent swaps (see Fig. 1). In
this review paper we assume that the label of each vertex in a graph denotes an object with that label,
while the label next to each vertex in a graph denotes a vertex label. We also assume that each graph
with a line topology is labelled in ascending order from left to right (see Fig. 1(a)). Therefore, we see that
Fig. 1(a) illustrates the bijective assignment between eight objects (numbered from 1 to 8) and eight vertices
(numbered from 1 to 8) in a graph of order eight with a line topology.

Now, the problem is to find a minimum-length sequence of adjacent swaps (i.e. swaps with swap distance
1) needed to sort eight objects in Fig. 1(a). First, we see that permutation p = 6 3 1 2 5 4 8 7 ∈ S8 represents
the initial bijective assignment in Fig. 1(a), while I = 1 2 3 4 5 6 7 8 ∈ S8 represents the sorted bijective
assignment (see Fig. 1(b)). The problem is now reduced to find a minimum-length sequence of permutation
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sorting by means of transpositions from the set T ′ = {(i i+1) : 1 ≤ i < 8}. The way how to find a minimum-
length sequence of permutation sorting by means of transpositions from the set T ′ = {(i i+1) : 1 ≤ i < 8}
is to apply the bubble sort algorithm [5]. Recall that the bubble sort algorithm sorts permutation p ∈ S8 of
eight objects in the following manner:

6 3 1 2 5 4 8 7
<1,2>−−−−→ 3 6 1 2 5 4 8 7

<2,3>−−−−→ 3 1 6 2 5 4 8 7
<1,2>−−−−→ 1 3 6 2 5 4 8 7

<3,4>−−−−→ 1 3 2 6 5 4 8 7
<2,3>−−−−→ 1 2 3 6 5 4 8 7

<4,5>−−−−→ 1 2 3 5 6 4 8 7
<5,6>−−−−→ 1 2 3 5 4 6 8 7

<4,5>−−−−→ 1 2 3 4 5 6 8 7
<7,8>−−−−→ 1 2 3 4 5 6 7 8,

where the label < a, b > of each arrow indicates that vertices with vertex labels a and b are involved in
each adjacent swap. We see that the above bubble sort algorithm decreases the inversion number by 1
whenever each adjacent swap takes place.

Proposition 3.1. Given an initial bijective assignment between n objects and n vertices in a graph of order
n with a line topology, let τ ∈ Sn represent the initial bijective assignment between n objects and n vertices.
(a) The minimum number of adjacent swaps needed to sort n objects is the inversion number of permutation
τ .
(b) An upper bound of the minimum number of adjacent swaps needed to sort n objects is n(n− 1)/2.

Proof. (a) The problem of finding the minimum number of adjacent swaps needed to sort the initial ar-
rangement of n objects on n vertices in the given graph with a line topology is reduced to the problem of
finding the minimum number of adjacent swaps needed to sort permutation τ . Since the minimum number
of adjacent swaps needed to sort permutation τ ∈ Sn is its inversion number by Theorem 2.1(a), the result
follows.
(b) Since the diameter of the Cayley graph BSn generated by T = {(i i+1) : 1 ≤ i < n} is an upper bound
of distance d(σ, I) from an arbitrary vertex σ ∈ Sn to vertex I corresponding to the identity permutation,
the result follows from the proof of (a) and the diameter of BSn, which is n(n− 1)/2.
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Fig. 2. Sorting nine objects on a graph with a star topology.

We next consider object sorting on a graph with a star topology using adjacent swaps (see Fig. 2). We
assume that a centralized vertex in a graph with a star topology is labelled 1, while other vertices are labelled
from 2 to n (n ≥ 3) in a (clockwise) ascending order. We see that permutation p = 7 9 2 1 6 4 5 3 8 ∈ S9

represents the initial bijective assignment in Fig. 2(a), while I = 1 2 3 4 5 6 7 8 9 ∈ S9 represents the sorted
bijective assignment (see Fig. 2(b)). Since p−1 takes p to the identity permutation I (i.e. pp−1 = I), the
problem of finding a minimum-length sequence of adjacent swaps needed to sort nine objects in Fig. 2(a)
is reduced to find a minimum-length permutation decomposition of p−1 using the set of transpositions
T ′ = {(1 i) : 2 ≤ i ≤ 9}. The following procedure is to find a minimum-length permutation decomposition
of π ∈ Sn (n ≥ 3) using the set of transpositions T = {(1 i) : 2 ≤ i ≤ n}.

Procedure 3.2. PERMUTATION DECOMPOSITION FOR STAR TOPOLOGY [18, 28, 30]
Input: A permutation π ∈ Sn (n ≥ 3).
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Output: A minimum-length permutation decomposition of π using the set of transpositions T = {(1 i) : 2 ≤
i ≤ n}.
• Write π ∈ Sn as a product of disjoint cycles in such a manner that (1 p2 · · · pj)(q11 · · · q1l1) · · · (qm1 · · · qmlm) ∈
Sn if j ≥ 2, write π as (q11 · · · q1l1) · · · (qm1 · · · qmlm) ∈ Sn otherwise.

• if j ≥ 3, then (1 p2 · · · pj) in π is decomposed into (1 pj)(1 pj−1) · · · (1 p2).
• for k ← 1 to m do
– if (lk ≥ 2) then (qk1 · · · qklk) in π is decomposed into (1 qk1 )(1 qklk)(1 qklk−1) · · · (1 qk1 )

By applying Procedure 3.2, we find a minimum-length sequence of adjacent swaps needed to sort the
initial arrangement of nine objects in Fig. 2(a) represented by permutation p = 7 9 2 1 6 4 5 3 8 ∈ S9. First,
we see that permutation p−1 = 4 3 8 6 7 5 1 9 2 ∈ S9 can be written as a product of disjoint cycles, i.e.,
p−1 = (1 4 6 5 7)(2 3 8 9). Therefore, it is decomposed into p−1 = (1 7)(1 5)(1 6)(1 4)(1 2)(1 9)(1 8)(1 3)(1 2)
using the set of transpositions T ′ = {(1 i) : 2 ≤ i ≤ 9} by Procedure 3.2. Now, the initial bijective assign-
ment in Fig. 2(a) represented by permutation p = 7 9 2 1 6 4 5 3 8 ∈ S9 of nine objects is sorted as follows by
means of the minimum number of adjacent swaps:

7 9 2 1 6 4 5 3 8
<1,7>−−−−→ 5 9 2 1 6 4 7 3 8

<1,5>−−−−→ 6 9 2 1 5 4 7 3 8
<1,6>−−−−→ 4 9 2 1 5 6 7 3 8

<1,4>−−−−→ 1 9 2 4 5 6 7 3 8
<1,2>−−−−→

9 1 2 4 5 6 7 3 8
<1,9>−−−−→ 8 1 2 4 5 6 7 3 9

<1,8>−−−−→ 3 1 2 4 5 6 7 8 9
<1,3>−−−−→ 2 1 3 4 5 6 7 8 9

<1,2>−−−−→ 1 2 3 4 5 6 7 8 9,

where the label < a, b > of each arrow indicates that vertices with vertex labels a and b are involved in
each adjacent swap.

Proposition 3.3. Given an initial bijective assignment between n objects and n vertices in a graph of order
n with a star topology, let τ ∈ Sn be a permutation representing the initial bijective assignment and also let
τ−1 be written in a ususal way as a product of disjoint cycles: (i) (1 p2 · · · pj)(q11 · · · q1l1) · · · (qm1 · · · qmlm) ∈ Sn

if j ≥ 2; (ii) (q11 · · · q1l1) · · · (qm1 · · · qmlm) ∈ Sn otherwise.
(a) The minimum number of adjacent swaps needed to sort n objects is n+m−r−1 for case (i) and n+m−r
for case (ii), where r is the number of fixed points in τ−1.
(b) An upper bound of the minimum number of adjacent swaps needed to sort n objects is b3(n− 1)/2c.

Proof. (a) We reduce the problem of finding the minimum number of adjacent swaps needed to sort the
initial arrangement of n objects on n vertices in the given graph with a star topology to the problem of
finding the minimum length of a permutation decomposition of τ−1 using the set of transpositions T =
{(1 i) : 2 ≤ i ≤ n}. Since the minimum length of a permutation decomposition of a permutation written as
a product of disjoint cycles as above using the set of transpositions T = {(1 i) : 2 ≤ i ≤ n} is n+m− r − 1
for case (i) and n+m− r for case (ii) [28], the result follows.
(b) Since the diameter of the Cayley graph STn generated by T = {(1 i) : 2 ≤ i ≤ n} is an upper bound of
distance d(σ, I) from an arbitrary vertex σ ∈ Sn to vertex I corresponding to the identity permutation, the
result follows from the proof of (a) and the diameter of STn, which is b3(n− 1)/2c.
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Fig. 3. Sorting six objects on a graph with a complete topology.

We next consider object sorting on a graph with a complete topology using adjacent swaps (see Fig. 3).
We assume that each vertex in a graph with a complete topology is labelled from 1 to n (n ≥ 3) in an
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arbitrary manner. We see that permutation p = 2 1 4 6 3 5 ∈ S6 represents the initial bijective assignment
in Fig. 3(a), while I = 1 2 3 4 5 6 ∈ S6 represents the sorted bijective assignment (see Fig. 3(b)). Now, the
problem of finding a minimum-length sequence of adjacent swaps needed to sort six objects in Fig. 3(a)
is reduced to find a minimum-length permutation decomposition of p−1 using the set of transpositions
T ′ = {(i j) : 1 ≤ i < j ≤ 6}. The following procedure is to find a minimum-length permutation decomposition
of permutation π ∈ Sn (n ≥ 3) using the set of transpositions T = {(i j) : 1 ≤ i < j ≤ n}.

Procedure 3.4. PERMUTATION DECOMPOSITION FOR COMPLETE TOPOLOGY [18,31,32]
Input: A permutation π ∈ Sn (n ≥ 3).
Output: A minimum-length permutation decomposition of π using the set of transpositions T = {(i j) : 1 ≤
i < j ≤ n}.
• Write π ∈ Sn as a product of disjoint cycles (q11 · · · q1l1) · · · (qm1 · · · qmlm).
• for k ← 1 to m do
– if (lk ≥ 3) then (qk1 · · · qklk) in π is decomposed into (qk1 q

k
lk

)(qk1 q
k
lk−1

) · · · (qk1 qk2 )

Using Procedure 3.4, we find a minimum-length sequence of adjacent swaps needed to sort the initial
arrangement of six objects in Fig. 3(a) represented by permutation p = 2 1 4 6 3 5 ∈ S6. We see that
permutation p−1 = 2 1 5 3 6 4 ∈ S6 can be written as a product of disjoint cycles, i.e., p−1 = (1 2)(3 5 6 4).
Therefore, it is decomposed into p−1 = (1 2)(3 4)(3 6)(3 5) using the set of transpositions T ′ = {(i j) : 1 ≤
i < j ≤ 6} by Procedure 3.4. Now, the initial bijective assignment in Fig. 3(a) represented by permutation
p = 2 1 4 6 3 5 ∈ S6 of six objects is sorted as follows by means of the minimum number of adjacent swaps:

2 1 4 6 3 5
<1,2>−−−−→ 1 2 4 6 3 5

<3,4>−−−−→ 1 2 6 4 3 5
<3,6>−−−−→ 1 2 5 4 3 6

<3,5>−−−−→ 1 2 3 4 5 6,

where the label < a, b > of each arrow indicates that vertices with vertex labels a and b are involved in each
adjacent swap.

Proposition 3.5. Given an initial bijective assignment between n objects and n vertices in a graph of order
n with a complete topology, let τ ∈ Sn be a permutation representing the initial bijective assignment between
n objects and n vertices and let τ−1 be written as a product of disjoint cycles.
(a) The minimum number of adjacent swaps needed to sort n objects is n − r, where r is the number of
disjoint cycles in τ−1 including fixed points.
(b) An upper bound of the minimum number of adjacent swaps needed to sort n objects is n− 1.

Proof. (a) We reduce the problem of finding the minimum number of adjacent swaps needed to sort the
initial arrangement of n objects on n vertices in the given graph with a complete topology to the problem
of finding the minimum length of a permutation decomposition of τ−1 using the set of transpositions T =
{(i j) : 1 ≤ i < j ≤ n}. Since the minimum length of a permutation decomposition of τ−1 using the set of
transpositions T = {(i j) : 1 ≤ i < j ≤ n} is n− r [31], the result follows.
(b) Since the diameter of the Cayley graph CTn generated by T = {(i j) : 1 ≤ i < j ≤ n} is an upper bound
of distance d(σ, I) from an arbitrary vertex σ ∈ Sn to vertex I corresponding to the identity permutation,
the result follows from the proof of (a) and the diameter of CTn, which is n− 1.

We next consider object sorting on a graph with a ring topology by adjacent swaps (see Fig. 4). We
assume that each vertex in a graph with a ring topology is labelled in ascending order (clockwise) starting
from 1 to n (n ≥ 3). We also see that permutation p = 6 3 2 4 5 8 1 7 ∈ S8 represents the initial bijective
assignment in Fig. 4(a), while I = 1 2 3 4 5 6 7 8 ∈ S8 represents the sorted bijective assignment (see Fig. 4(b)).
Now, the problem of finding a minimum-length sequence of adjacent swaps needed to sort eight objects
in Fig. 4(a) is reduced to find a minimum-length sequence of permutation sorting of p ∈ S8 by means
of transpositions from the set T ′ = {(i i+1) : 1 ≤ i < 8} ∪ {(1 8)}. The following procedure finds a
minimum-length sequence of permutation sorting of π ∈ Sn (n ≥ 3) by means of transpositions from the set
T = {(i i+1) : 1 ≤ i < n} ∪ {(1n)}.

Procedure 3.6. PERMUTATION SORTING FOR RING TOPOLOGY [18,21]
Input: A circular permutation π ∈ Sn (n ≥ 3).
Output: A minimum-length sequence of permutation sorting of π by means of transpositions from the set
T = {(i i+1) : 1 ≤ i < n} ∪ {(1n)}.
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Fig. 4. Sorting eight objects on a graph with a ring topology.

• Compute the stable displacement vector d̄ of π. Set p := π.
• while p 6= I do

– Find an adjacent pair of positions a1 having an element b1 and a2 having an element b2 such that
path(b1) and path(b2) are directed oppositely from one another having an intersection of both posi-
tions a1 and a2. If no such an adjacent pair of positions exist, find an adjacent pair of positions a1
having an element b1 and a2 having an element b2 such that b1 is homed (i.e. p(b1) = b1) while b2 is
not homed in which path(b2) passes through position a1.

– Append transposition (a1 a2) to the list for the permutation sorting of π. Swap element b1 on position
a1 and element b2 on position a2 in p. Compute the stable displacement vector of (the updated) p
along with (the updated) path(i) for each 1 ≤ i ≤ n.

By applying Procedure 3.6, the initial bijective assignment in Fig. 4(a) represented by permutation
p = 6 3 2 4 5 8 1 7 ∈ S8 of eight objects is sorted as follows by means of the minimum number of adjacent
swaps:

6 3 2 4 5 8 1 7
<2,3>−−−−→ 6 2 3 4 5 8 1 7

<7,8>−−−−→ 6 2 3 4 5 8 7 1
<1,8>−−−−→ 1 2 3 4 5 8 7 6

<7,8>−−−−→ 1 2 3 4 5 8 6 7
<6,7>−−−−→

1 2 3 4 5 6 8 7
<7,8>−−−−→ 1 2 3 4 5 6 7 8,

where the label < a, b > of each arrow indicates that vertices with vertex labels a and b are involved in
each adjacent swap.

Proposition 3.7. Let τ ∈ Sn be a permutation representing an initial bijective assignment between n objects
and n vertices in a graph of order n with a ring topology, where d̄ is the stable displacement vector of τ and
Ī(d̄) is its corresponding c-inversion number.
(a) The minimum number of adjacent swaps needed to sort n objects is Ī(d̄).
(b) An upper bound of the minimum number of adjacent swaps needed to sort n objects is bn2/4c.

Proof. (a) The problem of finding the minimum number of adjacent swaps needed to sort the initial arrange-
ment of n objects on n vertices in the given graph with a ring topology is reduced to the problem of finding
the minimum number of adjacent swaps needed to sort the circular permutation τ . Since the minimum
number of adjacent swaps needed to sort the circular permutation τ ∈ Sn is its c-inversion number by
Theorem 2.1(b), the result follows.
(b) Since the diameter of the Cayley graph MBSn generated by T = {(i i+1) : 1 ≤ i < n} ∪ {(1n)} is an
upper bound of distance d(σ, I) from an arbitrary vertex σ ∈ Sn to vertex I corresponding to the identity
permutation, the result follows from the proof of (a) and the diameter of MBSn, which is bn2/4c.
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4 Cayley graphs as state diagrams for sorting objects on graphs with line, star,
complete, and ring topologies

Cayley graphs [3, 19, 20] play an important role in both mathematics (e.g. combinatorics [33, 34], group
theory [35, 36], etc.) and computer science (e.g. interconnection network design [3, 19, 20], data center
design [37, 38], distributed systems [39, 40], multi-agent systems [18, 41], etc.). In Section 3 we used the
diameters of several kinds of Cayley graphs to find upper bounds of the minimum number of adjacent swaps
needed to sort objects on graphs with line, star, complete, and ring topologies. This section discusses in
detail how different kinds of Cayley graphs serve as state diagrams for sorting objects on those graphs by
adjacent swaps. This section also discusses how the word metric is used to describe the distance between two
permutations representing two arrangements of objects at the vertices of a graph with a line, star, complete,
or ring topology. We first summarize necessary definitions and results used in this section, which are found
in [3, 18–20,36].

Let G be a finite group and S be a generating set of G. Recall that the vertices of a Cayley graph
Cay(G,S) are the elements of G, and the edges are all ordered pairs (g, gs) for g ∈ G, s ∈ S. The edge (g, gs)
is said to be labelled by s. If S is closed under inverses, then the edges of Cay(G,S) are undirected.

A path p from vertex v1 to vertex v2 in Cay(G,S) can be written as a sequence of generators g1, . . . , gk,
gi ∈ S, or simply written as p = g1 · · · gk.

An automorphism of a simple connected graph Γ = (V,E) is a permutation p of V such that (u, v) is an
edge of Γ if and only if (p(u), p(v)) is an edge of Γ.

A simple connected graph Γ = (V,E) is said to be vertex transitive if given any pair of vertices u and v,
there exists an automorphism α ∈ Aut(Γ) such that v = α(u).

Each element g ∈ G in Cay(G,S) can be written as a product of generators g = g1 · · · gk, gi ∈ S. (A word
g1 · · · gk for k = 0 is read as the empty word, which is the identity element of G.) If k is minimal among all
such expressions for g, then k is called the length of g, denoted by l(g) = k, and the word g1 · · · gk is called
a reduced word or reduced decomposition for g.

Let X be a set and d : X × X → R+ a function from X × X to the set R+ of non-negative real num-
bers satisfying the following properties. For all x, y, z in X: (a) d(x, y) = 0 if and only if x = y; (b)
d(x, y) = d(y, x); (c) d(x, z) ≤ d(x, y) + d(y, z). Then, d is called a metric or distance function on X and
d(x, y) is called the distance from x to y. The set X with metric d is called a metric space and is denoted
by (X, d).

Recall that a metric on Cay(G,S) can be defined in such a way that the length of every edge in Cay(G,S)
is 1 and the distance between two vertices is the minimum length of edges joining them (i.e. the length of
a shortest path between two vertices). The metric on Cay(G,S) induces a metric on G in a natural way by
considering G as the set of vertices in Cay(G,S). This metric on G is called the word metric with respect
to S. By the word metric on Cay(G,S) we mean the word metric on G with respect to S. The word metric
on the bubble-sort graph BSn is called as Kendall’s tau distance [2], while the word metric on the complete
transposition graph CTn is called as Cayley distance [14]. (The interested reader may refer to [2, 42] for
other metrics on permutations, such as Permutation Hamming distance [42] and Ulam’s distance [2].)

Since every Cayley graph is vertex transitive [19], we see that a path p from vertex v1 to vertex v2 in
Cay(G,S) is also a path from vertex v−12 v1 to vertex I, where I is the identity element of Sn. Note that p is
also a path from vertex I to vertex v−11 v2 in Cay(G,S). To find a shortest path from v1 to v2 in Cay(G,S) is
equivalent to find a shortest path from v−12 v1 to vertex I, which in turn is equivalent to find a reduced word
of v−11 v2. We also see that there are often multiple shortest paths from vertex v1 to vertex v2 in Cay(G,S).
For example, since there are 16 reduced words for 4321 ∈ S4 with its generating set S = {(i i+1) : 1 ≤ i < 4}
[36] , there are 16 shortest paths from vertex I to vertex 4321 ∈ S4 in BS4. (See Fig. 5 for the bubble-sort
graph BS4.)

Let L(n) (resp. R(n)) denote a graph of order n with a line topology (resp. ring topology) and let
p ∈ Sn represent an initial arrangement of n objects on n vertices in L(n) (resp. R(n)). The Cayley graph
BSn (resp. MBSn) can be seen as a state diagram for sorting n objects on L(n) (resp. R(n)) by adjacent
swaps. The vertices of BSn (resp. MBSn) represent the possible arrangements of n objects on n vertices
in L(n) (resp. R(n)), while the edges of BSn (resp. MBSn) correspond to adjacent swaps of objects on
L(n) (resp. R(n)). Sorting the initial arrangement of n objects on n vertices in L(n) (resp. R(n)) by adja-
cent swaps corresponds to find a path from p to I in BSn (resp. MBSn). Furthermore, sorting the initial
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Fig. 5. Bubble-sort graph BS4 [43].

arrangement of n objects at the vertices of L(n) (resp. R(n)) by using the minimum number of adjacent
swaps corresponds to find a shortest path from p to I in BSn (resp. MBSn), which in turn corresponds to
find a minimum-length generator sequence or reduced word of p−1 in Sn with respect to the generating set
S = {(i i+1) : 1 ≤ i < n} (resp. S′ = S ∪ {(1n)}).

For example, let si = (i i+1), 1 ≤ i < 8, which generates S8. If q = 6 3 1 2 5 4 8 7 (see Fig. 1) represents
an initial arrangement of eight objects at the vertices of L(8), a sequence of adjacent swaps represented by
(< 1, 2 >,< 2, 3 >,< 1, 2 >,< 3, 4 >,< 2, 3 >,< 4, 5 >,< 5, 6 >,< 4, 5 >,< 7, 8 >) corresponds to a
reduced word s1s2s1s3s2s4s5s4s7 for q−1, which represents a minimum-length sequence of adjacent swaps
needed to sort the initial arrangement of eight objects on L(8).

Similarly, let S(n) (resp. C(n)) denote a graph of order n with a star topology (resp. complete topology)
and let p ∈ Sn be a permutation representing an initial arrangement of n objects on n vertices in S(n) (resp.
C(n)). We also see that the Cayley graph STn (resp. CTn) can be viewed as a state diagram of sorting n
objects on n vertices in S(n) (resp. C(n)) by adjacent swaps. The vertices of STn (resp. CTn) represent the
possible arrangements of n objects at the vertices of S(n) (resp. C(n)), while the edges of STn (resp. CTn)
correspond to adjacent swaps of objects on S(n) (resp. C(n)). Sorting the initial arrangement of n objects
at the vertices of S(n) (resp. C(n)) by using the minimum number of adjacent swaps corresponds to find a
shortest path from p to I in STn (resp. CTn), which again corresponds to find a minimum-length permuta-
tion decomposition or reduced word of p−1 in Sn with respect to the generating set T = {(1 i) : 2 ≤ i ≤ n}
(resp. T ′ = {(i j) : 1 ≤ i < j ≤ n}). For example, let si = (1 i), 2 ≤ i ≤ 4, which generates S4. If q = 2 3 4 1
represents an initial arrangement of four objects at the vertices of S(4), a sequence of adjacent swaps rep-
resented by (< 1, 2 >,< 1, 3 >,< 1, 4 >) sorts q. Since a minimum-length permutation decomposition of
q−1 = 4 1 2 3 is q−1 = (1 2)(1 3)(1 4) = s1s2s3, we see that s1s2s3 corresponds to a minimum-length sequence
of adjacent swaps needed to sort the initial arrangement of four objects on S(4) (see Fig. 6).

Remarks. Algorithms for finding disjoint paths in Cayley graphs were studied in [44–49]. For example,
node-disjoint paths between two vertices in the bubble-sort graph BSn provide intermediate disjoint ar-
rangements of n objects (i.e. distinct permutations of n objects) when transforming one arrangement of n
objects into the other arrangement of n objects at the vertices of L(n) by adjacent swaps. Note that those
node-disjoint paths are not necessarily shortest paths. In [20] Lakshmivarahan et al. remarked that the prob-
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Fig. 6. Star graph ST4 [3].

lem of enumerating node-disjoint paths in MBSn is open. The interested reader may refer to [20,44–47,50]
for further details of disjoint paths in Cayley graphs.

5 Applications to genomic rearrangements

In biology a genome is defined as “the entire collection of genes encoded by a particular organism” [51]. A
series of genomic rearrangement events may alter the genomic architecture of a species, where each genomic
rearrangement event can change the ordering of genes [52]. The main genomic rearrangement operations
include transpositions [16, 53, 54], reversals (also called inversions) [55–57], block-interchanges [13, 58, 59],
etc. Genomes are often represented by permutations of genes. Specifically, when the information about
the orientation of genes is not available, unsigned permutations of genes are used for genomic rearrange-
ments [14]. Genomes are represented by unsigned permutations in the situation where (i) the order of genes
within each genome is available, (ii) every genome shares the same collection of genes, (iii) every genome
has a single copy of each gene, and (iv) every genome consists of a single chromosome [14]. In [15] Christie
pointed out that the simplification (iii) is biologically valid when a genome is unlikely to have duplicate
genes. We also need to consider circular permutations because bacteria often have a genome consisting of a
circular chromosome, which can be naturally represented by a circular permutation [60]. In the remainder
of this section we only consider unsigned permutations (resp. unsigned circular permutations) and simply
call them permutations (resp. circular permutations).

When genomes are represented by permutations, the genomic rearrangement problem [14] is given as
“Given two genomes represented by permutations p1 ∈ Sn and p2 ∈ Sn, find a minimum-length sequence of
allowed rearrangement operations that transforms p1 into p2 (or p2 into p1).” This minimum length is called
the distance [15] between two genomes. Among the genomic rearrangement operations, we first describe the
transposition1 [14, 53] operation of genomic rearrangements.

Let p = p1 · · · pn ∈ Sn. A segment X is defined as a sequence of consecutive elements pi, . . . , pj (j ≥ i).
Two segments X = pi, . . . , pj and Y = pk, . . . , pl are contiguous if k = j + 1 or i = l+ 1. A transposition on

1A transposition used in genomic rearrangements is different from a transposition used in previous sections which is a cycle
of order two. The distinction is clear from context.
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p is defined as an exchange of two disjoint contiguous segments. Given p ∈ Sn, the transposition T (i, j, k)
with 1 ≤ i < j < k ≤ n + 1 applied to p swaps two disjoint contiguous segments determined respectively
by i and j − 1 and by j and k − 1, transforming p into p · T (i, j, k). Therefore, T (i, j, k) is described by the
following two-line permutation:1 · · · i− 1 i i+ 1 · · · j − 2 j − 1 j j + 1 · · · k − 1 k · · ·n

1 · · · i− 1 j j + 1 · · · k − 1 i i+ 1 · · · j − 2 j − 1 k · · ·n

 .

Let p = p1 · · · pn ∈ Sn be a permutation representing a genome. The reversal ρ(i, j) of an interval
[i, j], 1 ≤ i < j ≤ n, is the permutation [14,55] given as follows:(

1 · · · i− 1 i i+ 1 · · · j − 1 j j + 1 · · ·n
1 · · · i− 1 j j − 1 · · · i+ 1 i j + 1 · · ·n

)
.

We see that p · ρ(i, j) has the effect of reversing genes pi, pi+1, . . . , pj in a genome represented by p.
(A reversal on a circular permutation is defined in a similar way to the above. See [61] for details.)

Meanwhile, block-interchanges [58, 59] can be viewed as generalized transpositions in that they swap
two disjoint but not necessarily contiguous segments on a permutation. A block-interchange operation of
genomic rearrangements is defined as follows [14,59]:

Given p ∈ Sn, the block-interchange B(i, j, k, l) with 1 ≤ i < j ≤ k < l ≤ n + 1 applied to p swaps two
disjoint segments determined respectively by i and j−1 and by k and l−1, transforming p into p ·B(i, j, k, l).
Therefore, B(i, j, k, l) is described by the following two-line permutation:1 · · · i− 1 i · · · j − 1 j j + 1 · · · k − 1 k · · · l − 1 l l + 1 · · ·n

1 · · · i− 1 k · · · l − 1 j j + 1 · · · k − 1 i · · · j − 1 l l + 1 · · ·n

 .

In [58] Lin et al. remarked that block-interchange rearrangements seemingly play an important role in
the evolution of bacterial (Vibrio) species. In [59] Chin et al. discussed the block-interchange distance prob-
lem, which is concerned with finding the minimum number of block-interchanges needed to transform one
permutation into another permutation. If the size of blocks to be swapped in block-interchanges is exactly
1, the block-interchanges become the swaps of two elements on a permutation. In particular, if two elements
to be swapped are contiguous, those swaps are called adjacent swaps2 [13,62,63]. An adjacent swap can also
be viewed as a reversal of length two. It is known that some mutations may cause two adjacent genes in a
genome to be reversed [63].

Similarly, the reversal distance problem is concerned with finding the minimum number of reversals
needed to transform one permutation into another permutation [15].

In Section 3 we discussed sorting n objects on n vertices in a graph of order n with a line or ring topol-
ogy by adjacent swaps. In this section we consider objects as genes and an arrangement of objects at the
vertices of a graph with a line topology (resp. ring topology) as a genome (resp. circular genome). Let
p = 6 1 2 4 8 5 3 7 ∈ S8 be a circular permutation representing a circular genome as shown in Fig. 7(a) and
let q = 3 2 1 4 8 6 7 5 ∈ S8 be a circular permutation representing a circular genome as shown in Fig. 7(b). To
find the minimum number of adjacent swaps needed to transform p into q is reduced to find the minimum
number of adjacent swaps needed to sort circular permutation q−1p. Since q−1p = 6 3 2 4 5 8 1 7, the problem
is now to find the minimum number of adjacent swaps needed to sort circular permutation 6 3 2 4 5 8 1 7 (see
Fig. 4), which was discussed in Section 3 (see Procedure 3.6).

The following specific cases of genomic rearrangement problems are directly relevant to the object sorting
methods discussed in Section 3.

(i) Sorting by reversals of length 2 (i.e. adjacent swaps) on a linear (resp. circular) permutation [62,64–66]:
Find a minimum-length sequence of reversals of length 2 (i.e. adjacent swaps) that sorts a permutation
(resp. circular permutation) p.

(ii) Sorting by prefix-exchanges [14,67,68]: Find a minimum-length sequence of prefix-exchanges that sorts
a permutation p, where a prefix-exchange [69] refers to an operation that swaps the first element of p

2Recall that a swap with swap distance 1 is also called an adjacent swap in this paper. The distinction is clear from context.
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Fig. 7. Transforming a circular permutation representing a circular genome into another one.

with any other element of p.

(iii) Sorting by block-interchanges of length 1 (i.e. element-interchanges) [14, 67, 70]: Find a minimum-
length sequence of block-interchanges of length 1 (i.e. element-interchanges ) that sorts a permutation
p.

Given a permutation p, (i) can be solved by using the bubble sort algorithm for a linear permutation and by
using Procedure 3.6 for a circular permutation. (Sorting by reversals (or inversions) of length 2 (i.e. adjacent
swaps) on a circular permutation can also be solved in polynomial time by lifting the problem to the problem
involving the (extended) affine symmetric group. The interested reader may refer to [66] for further details.)
Given a permutation p, (ii) can be solved by applying the permutation decomposition procedure shown in
Procedure 3.2 with the input p−1. Similarly, given a permutation p, (iii) can be solved by applying the
permutation decomposition procedure shown in Procedure 3.4 with the input p−1.

Now, consider that a permutation (resp. circular permutation) p ∈ Sn representing a genome (resp. a
circular genome). We see that sorting p by using the minimum number of reversals of length 2 corresponds
to find a shortest path from permutation (resp. circular permutation) p to I in BSn (resp. MBSn).

Let d be a word metric on BSn (i.e. Kendall’s tau distance). The number of permutations p ∈ Sn with
d(p, I) = k is exactly the number of permutations in Sn with exactly k inversions, denoted by T (n, k). The
generating function for the numbers T (n, k) is given as follows [4, 71]:

n∏
i=1

1− xi

1− x
=

∞∑
k=0

T (n, k)xk. (1)

In other words, the number of permutations in Sn with exactly k inversions is the coefficient of xk in (1).

Table 1. The number of permutations p ∈ Sn with d(p, I) = k, 1 ≤ n ≤ 8, where d is a word metric on STn [72].

n k 0 1 2 3 4 5 6 7 8 9 10

1 1 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0
3 1 2 2 1 0 0 0 0 0 0 0
4 1 3 6 9 5 0 0 0 0 0 0
5 1 4 12 30 44 26 3 0 0 0 0
6 1 5 20 70 170 250 169 35 0 0 0
7 1 6 30 135 460 1,110 1,689 1,254 340 15 0
8 1 7 42 231 1,015 3,430 8,379 13,083 10,048 3,409 315

Let p ∈ Sn be a permutation representing a genome. Similarly, sorting p by using the minimum number
of prefix-exchanges corresponds to find a shortest path from permutation p to I in STn. Now, let d be a

13



word metric on STn. Table 1 shows the number of permutations p ∈ Sn with d(p, I) = k, 1 ≤ n ≤ 8. The
number of permutations p ∈ Sn with d(p, I) = k is exactly the Whitney numbers of the second kind for the
star poset [72]. For n ≥ 1 and 3 ≤ k ≤ b3(n− 1)/2c, it satisfies the following recurrence relation [73,74]:

Wn,k = (n− 1)Wn−1,k−1 +

n−2∑
j=1

jWj,k−3, (2)

with Wn,0 = 1, Wn,1 = n− 1, and Wn,2 = (n− 1)(n− 2). For example, we have W4,3 = 9, which means that
there are nine permutations q ∈ S4 with d(q, I) = 3 (see Table 1 with n = 4 and k = 3). For permutations
p ∈ Sn, 1 ≤ n ≤ 8, the distribution of the distance involving prefix-exchanges is shown in Table 1.

Table 2. The number of permutations p ∈ Sn with d(p, I) = k, 1 ≤ n ≤ 10, where d is a word metric on CTn [14].

n k 0 1 2 3 4 5 6 7 8 9

1 1 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0
3 1 3 2 0 0 0 0 0 0 0
4 1 6 11 6 0 0 0 0 0 0
5 1 10 35 50 24 0 0 0 0 0
6 1 15 85 225 274 120 0 0 0 0
7 1 21 175 735 1,624 1,764 720 0 0 0
8 1 28 322 1,960 6,769 13,132 13,068 5,040 0 0
9 1 36 546 4,536 22,449 67,284 118,124 109,584 40,320 0
10 1 45 870 9,450 63,273 269,325 723,680 1,172,700 1,026,576 362,880

Let p ∈ Sn be a permutation representing a genome. We also see that sorting p by using the minimum
number of block-interchanges of length 1 corresponds to find a shortest path from permutation p to I in
CTn. Now, let d be a word metric on CTn. If permutation p ∈ Sn is written as a product of disjoint cycles,
then d(p, I) = n − r in CTn, where r is the number of disjoint cycles including fixed points [31]. Table 2
shows the number of permutations p ∈ Sn with d(p, I) = k, 1 ≤ n ≤ 10. The number of permutations of
n elements into m cycles is obtained by the (unsigned) Stirling numbers of the first kind [75], denoted by
s(n,m), for 1 ≤ m ≤ n. It satisfies the following recurrence relation:

s(n,m) = s(n− 1,m− 1) + (n− 1)s(n− 1,m), (3)

with s(0, 0) = 1 and s(n, 0) = s(0, n) = 0. For example, we have s(3, 1) = 2, which means that the number
of permutations of three elements into one cycle is two, i.e., (1 2 3) ∈ S3 and (1 3 2) ∈ S3. It follows that
there are two permutations q ∈ S3 with d(q, I) = 2 (see Table 2 with n = 3 and k = 2). For permutations
p ∈ Sn, 1 ≤ n ≤ 10, the distribution of the distance involving block-interchanges of length 1 is shown in
Table 2.

6 Discussion and related works

In previous sections we focus on optimal sorting procedures by adjacent swaps. We discussed sorting n
objects on n vertices in a graph of order n with a line, star, complete, or ring topology using the minimum
number of adjacent swaps. When sorting objects at the vertices of graphs with some other topologies, we
may consider a k-approximation algorithm [76] which guarantees that the output solution is no greater than
k times optimal solution, where k > 1 for minimization problems. We first consider the problem of sorting
n objects on n vertices in a tree T with n vertices by adjacent swaps. In [19] Akers and Krishnamurthy
proposed a puzzle consisting of n markers on an arbitrary transposition tree with n vertices, which is basically
the problem of sorting an initial arrangement of n objects on n vertices in a tree with n vertices by adjacent
swaps. Some (not necessarily tight) upper bounds of the number of adjacent swaps needed to sort n objects
on n vertices in a tree T with n vertices were studied by examining an upper bound of the diameter of the
Cayley graph generated by the corresponding transposition tree [19,77]. Let p be a permutation representing
an initial arrangement of n objects on n vertices in an arbitrary tree T with n vertices, where both objects
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and vertices of T are numbered from 1 to n. We say that object i is homed if i = p(i), where p(i) denotes
the i-th element of permutation p. Let η(p) be the number of cycles in p and d(i, j) be the distance between
vertices i and j in T . The following procedure describes sorting the initial arrangement of n objects on n
vertices in T by adjacent swaps, where its (not necessarily tight) upper bound of the number of adjacent
swaps needed to sort the initial arrangement of n objects on n vertices in T is η(p)− n+ Σn

i=1d(i, p(i)) (see
Theorem 5 and appendix in [19]).

Procedure 6.1. SORTING OBJECTS ON A TREE BY ADJACENT SWAPS [19]
Input: A permutation p ∈ Sn (n ≥ 3) representing an initial bijective assignment between n objects (num-
bered from 1 to n) and n vertices (numbered from 1 to n) on a tree T with n vertices.
Output: A sequence of adjacent swaps needed to sort n objects in T .
• Initialize the sequence S.
• while p 6= I do

– Find an adjacent pair of vertices v1 and v2 such that their unhomed objects o1 and o2, respectively,
are needed to move toward each other for their respective homed positions, i.e., p(ok) = ok for k = 1
and k = 2. Or find an adjacent pair of vertices v1 and v2 such that object o1 is homed while object
o2 is not homed such that object o2 needs to move toward vertex v1 for its homed position. Then,
swap object o1 on vertex v1 and object o2 on vertex v2. Append transposition (v1 v2) to the sequence
S and update the permutation p reflecting the updated arrangement of n objects at the vertices of
T .

• Return the sequence S.

In [10] Yamanaka et al. showed that token sorting involving n tokens and a graph of order n by adjacent
swaps is solvable in O(n2) token swaps. They provide a polynomial-time 2α-approximation algorithm for
the problem of finding the minimum number of adjacent swaps needed to sort an initial arrangement of n
tokens on n vertices in a graph of order n whose tree α-spanner [78] can be computed in polynomial time.

Now, we consider sorting methods for graphs allowing swaps with swap distance at most k (k ≥ 2), which
have not been discussed in previous sections. We see that the distance of each pair of vertices in a graph
with a star topology is at most 2. We also see that the distance of each pair of vertices in a graph with a
complete topology is 1. Therefore, it is easy to see that the minimum number of swaps with swap distance at
most k (k ≥ 2) needed to sort an initial arrangement of n objects on n vertices, represented by permutation
p ∈ Sn, in a graph of order n with a star topology is the same with the minimum number of swaps needed
to sort the initial arrangement of n objects on n vertices, represented by the same permutation p ∈ Sn, in
a graph of order n with a complete topology.

For a given graph G of order n with a line topology (resp. ring topology), the problem of finding the
minimum number of swaps with swap distance at most k (k ≥ 2) needed to sort an initial arrangement of
n objects on n vertices in G is basically the problem of finding the minimum number of (k + 1)-bounded
transpositions needed to sort a permutation (resp. a circular permutation), where a k-bounded (k ≥ 2)
transposition [62] is an operation that swaps two elements having at most k − 2 elements in between. Al-
though the solution of the above problem is not generally known, there are some approximation algorithms
available, in particular for k = 2. (A 3-bounded transposition is called a short swap [62]. The interested
reader may refer to [62,79] for further details.)

As discussed in Section 5, permutation sorting plays a significant role in genomic rearrangements. Al-
though we discussed polynomial-time algorithms for sorting linear or circular permutations by reversals of
length 2 in Sections 3 and 5, sorting permutations by reversals is NP-hard in general [80], while sorting
signed permutations by reversals is polynomial [81]. In [61] Solomon et al. proved that sorting circular
permutations by reversals is also NP-hard.

Sorting by prefix-reversals [14, 82], which is also known as the pancake sorting problem, was studied on
pancake graphs [82], where pancake graphs are Cayley graphs of symmetric groups with respect to the gen-
erating set of prefix-reversals. The exact diameter of an n-pancake graph is unknown in general, but it is
known to lie between 17n/16 and (5n+ 5)/3 [83].

Sorting by transpositions used in genomic rearrangements is NP-hard [16], but there is a 1.375-approximation
algorithm for sorting by transpositions presented by Elias and Hartman [53].

Sorting by block-interchanges is solvable in polynomial time [84]. Feng and Zhu [54] presented an
O(n log n) solution for this problem using their data structure.
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The solution spaces of genomic rearrangement problems have been researched extensively in recent
years [56, 57, 85–88]. In [88] Siepel enumerated sorting solutions for sorting by reversals for high-level prob-
lems. The solution space of the All Sorting Reversals (ASR) problem is explored in [56, 57, 85, 86], which
is used for sampling and estimating the total number of optimal sorting paths [89, 90]. In [85] Ajana et
al. showed a method to allow the user to select one or several solutions for sorting signed permutations by
reversals among the large number of minimal solutions.

To find multiple minimum-length sequences, if available, to sort p ∈ Sn by adjacent swaps, we need to
enumerate the reduced words of p−1 ∈ Sn with respect to the generating set S = {(i i+1) : 1 ≤ i < n}.
This problem is researched in the area of combinatorics of words in Coxeter groups [36, 91]. Eriksson [92]
proposed the number game, which provides a means of enumerating the reduced words of a permutation
q ∈ Sn with respect to the generating set S = {(i i+1) : 1 ≤ i < n} of Sn using the theory of Coxeter
groups.

To find multiple sequences, if available, to sort a permutation p ∈ Sn by using the minimum number
of prefix-exchanges, we need to enumerate minimum-length permutation decompositions (or factorizations)
of p−1 ∈ Sn using transpositions from the set T = {(1 i) : 2 ≤ i ≤ n}. Permutation decompositions of a
permutation q ∈ Sn using the minimum number of transpositions from the set T = {(1 i) : 2 ≤ i ≤ n}
is called minimal star factorizations [30] of q ∈ Sn. The enumeration of minimal star factorizations of a
permutation is discussed in [93], while a formula for the total number of minimal star factorizations of a
permutation is shown in [30].

In [94] Hurwitz found a formula for the number of minimal transitive 2-cycle factorizations [95] of a
permutation with its cycle type. Bousquet-Mélou and Schaeffer [95] enumerated minimal transitive 2-cycle
(i.e. transposition) factorizations of a permutation using planar constellations and Eulerian trees.

Meanwhile, in [11] Thompson and Kung presented an algorithm for sorting n2 elements on an n×n mesh
(or 2D) graph, where the swaps of their algorithm are not restricted to adjacent swaps. For a graph with a
2D grid (or 3D grid) topology, it is still open to find a (deterministic) polynomial time algorithm for finding
a minimum-length sequence of adjacent swaps needed to sort n objects on n vertices in a graph of order n
with a 2D grid (or 3D grid) topology.

7 Implementation

Permutation sorting and permutation decomposition procedures discussed in Section 3 run in (deterministic)
polynomial time [4, 5, 18, 21, 69], which can be implemented as software modules. Although there are other
utilities for permutation groups, such as GAP [96] and MAGMA [97], our implementation is specifically
designed for procedures described in Section 3. The purpose of our implementation is to provide a tool for
solving the adjacent swap-based object sorting problems discussed in Section 3 with the detailed output
that allows the reader to follow each adjacent swap during an object sorting procedure. We now briefly
describe our implementation, which is developed in the standard GNU C++ language [98] based on our
previously implemented TSG tool [18]. The GNU C++ compiler is available free under the GNU General
Public License (GPL) [99], which is included in most distributions of Linux platforms. It is also available
for Windows platforms via a Cygwin toolkit [100], which provides a Linux-like environment for Windows
platforms.

Our implementation had been tested both using gcc version 4.1.2 [98] running under a Linux platform
and using gcc version 4.9.3 and Cygwin 2.3.1 running under a Windows platform. Source codes and data
for our implementation are publicly available at the GitHub repository (see [101]), where GitHub is both
an online code repository and a version control system [102]. See Table 3 for an example output of our
implementation for a graph with a star topology.

Table 3. An example output for a graph with a star topology.

Graph Network Topology: Star Topology
Number of Objects: 9
Random Initial Source Permutation: No
Source Permutation (Initial Assignment): 7 9 2 1 6 4 5 3 8
Target Permutation: 1 2 3 4 5 6 7 8 9
Upper Bound (the diameter of star Cayley graph ST n for n=9) : 12
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The minimum number of adjacent swaps needed is 9.
<A permutation decomposition for the inverse of source permutation>
4 3 8 6 7 5 1 9 2 = (1 7)(1 5)(1 6)(1 4)(1 2)(1 9)(1 8)(1 3)(1 2)
Source Permutation: 7 9 2 1 6 4 5 3 8
1. After swapping objects between vertex 1 and vertex 7: 5 9 2 1 6 4 7 3 8
2. After swapping objects between vertex 1 and vertex 5: 6 9 2 1 5 4 7 3 8
3. After swapping objects between vertex 1 and vertex 6: 4 9 2 1 5 6 7 3 8
4. After swapping objects between vertex 1 and vertex 4: 1 9 2 4 5 6 7 3 8
5. After swapping objects between vertex 1 and vertex 2: 9 1 2 4 5 6 7 3 8
6. After swapping objects between vertex 1 and vertex 9: 8 1 2 4 5 6 7 3 9
7. After swapping objects between vertex 1 and vertex 8: 3 1 2 4 5 6 7 8 9
8. After swapping objects between vertex 1 and vertex 3: 2 1 3 4 5 6 7 8 9
9. After swapping objects between vertex 1 and vertex 2: 1 2 3 4 5 6 7 8 9
Target Permutation: 1 2 3 4 5 6 7 8 9
Upper Bound: 12
Reached the target permutation successfully (9 adjacent swaps).

Given a graph with a line, star, complete, or ring topology, our implementation takes permutation
p ∈ Sn (n ≥ 3) of n objects as an input for an initial bijective assignment between n objects and n vertices.
Then, it shows a step-by-step output for sorting n objects by means of the minimum number of adjacent
swaps using the generating set of Sn corresponding to a given topology. It also shows an upper bound of the
minimum number of adjacent swaps needed to sort n objects in a graph of order n with a given topology,
which was discussed in Propositions 3.1, 3.3, 3.5, and 3.7.

The correctness of the permutation sorting and permutation decomposition procedures discussed in Sec-
tion 3 was shown in the literature [4, 5, 18, 21, 30, 31, 69]. Our implementation basically implemented those
proven procedures in order to provide a tool for solving the object sorting problems discussed in Section 3.
One straightforward way to verify an output of our implementation is to first compute the minimum number
of adjacent swaps needed to sort an initial arrangement of objects at the vertices of a graph with a given
topology, then follow each (numbered) output step whether or not an adjacent swap has indeed been oc-
curred. If the number of generated output steps coincides with the computed minimum number and each
(numbered) output step is indeed an adjacent swap, the program has generated the desired output, which
is a minimum-length sequence of adjacent swaps needed to sort the initial arrangement of objects at the
vertices of the graph with the given topology. See Table 4 for another example output for a graph with a
line topology.

Table 4. An example output for a graph with a line topology.

Graph Network Topology: Line Topology
Number of Objects: 10
Random Initial Source Permutation: Yes
Source Permutation (Initial Assignment): 1 9 2 7 10 6 4 3 8 5
Target Permutation: 1 2 3 4 5 6 7 8 9 10
Upper Bound (the diameter of bubble sort Cayley graph BS n for n=10) : 45 (i.e.,nx(n-1)/2 for n=10).
The minimum number of adjacent swaps needed is 21.
<A permutation decomposition for the inverse of source permutation>
1 3 8 7 10 6 4 9 2 5 = (2 3)(3 4)(5 6)(6 7)(7 8)(8 9)(9 10)(4 5)(5 6)(6 7)(7 8)(8 9)(3 4)
(4 5)(5 6)(7 8)(3 4)(4 5)(6 7)(3 4)(5 6)
Source Permutation: 1 9 2 7 10 6 4 3 8 5
1. After swapping objects between vertex 2 and vertex 3 : 1 2 9 7 10 6 4 3 8 5
2. After swapping objects between vertex 3 and vertex 4 : 1 2 7 9 10 6 4 3 8 5
3. After swapping objects between vertex 5 and vertex 6 : 1 2 7 9 6 10 4 3 8 5
4. After swapping objects between vertex 6 and vertex 7 : 1 2 7 9 6 4 10 3 8 5
5. After swapping objects between vertex 7 and vertex 8 : 1 2 7 9 6 4 3 10 8 5
6. After swapping objects between vertex 8 and vertex 9 : 1 2 7 9 6 4 3 8 10 5
7. After swapping objects between vertex 9 and vertex 10 : 1 2 7 9 6 4 3 8 5 10
8. After swapping objects between vertex 4 and vertex 5 : 1 2 7 6 9 4 3 8 5 10
9. After swapping objects between vertex 5 and vertex 6 : 1 2 7 6 4 9 3 8 5 10
10. After swapping objects between vertex 6 and vertex 7 : 1 2 7 6 4 3 9 8 5 10
11. After swapping objects between vertex 7 and vertex 8 : 1 2 7 6 4 3 8 9 5 10
12. After swapping objects between vertex 8 and vertex 9 : 1 2 7 6 4 3 8 5 9 10
13. After swapping objects between vertex 3 and vertex 4 : 1 2 6 7 4 3 8 5 9 10
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14. After swapping objects between vertex 4 and vertex 5 : 1 2 6 4 7 3 8 5 9 10
15. After swapping objects between vertex 5 and vertex 6 : 1 2 6 4 3 7 8 5 9 10
16. After swapping objects between vertex 7 and vertex 8 : 1 2 6 4 3 7 5 8 9 10
17. After swapping objects between vertex 3 and vertex 4 : 1 2 4 6 3 7 5 8 9 10
18. After swapping objects between vertex 4 and vertex 5 : 1 2 4 3 6 7 5 8 9 10
19. After swapping objects between vertex 6 and vertex 7 : 1 2 4 3 6 5 7 8 9 10
20. After swapping objects between vertex 3 and vertex 4 : 1 2 3 4 6 5 7 8 9 10
21. After swapping objects between vertex 5 and vertex 6 : 1 2 3 4 5 6 7 8 9 10
Target Permutation: 1 2 3 4 5 6 7 8 9 10
Upper Bound: 45
Reached the target permutation successfully (21 adjacent swaps).

In Table 4 we see that the minimum number of adjacent swaps needed to sort permutation 1 9 2 7 10 6 4 3 8 5
∈ S10 is 21, which can be computed by hand as well using its inversion number. The output generated by
the program contains total 21 steps, where each (numbered) output step is indeed an adjacent swap.

In the “data” directory of our source codes at the GitHub repository [101] we included more complex
types of input and output data for object sorting up to 200 objects on graphs with line, star, complete,
and ring topologies. Since our implementation is freely available at a source code level under the free GPL
license, the user may reuse our source codes for the user’s specific implementation in order to apply them to
other sorting problems.

8 Concluding remarks

This paper reviewed adjacent swap-based sorting methods for graphs with several well-known topologies.
For a given permutation p ∈ Sn representing an initial arrangement of n objects on n vertices in a graph
of order n with a line, star, complete, or ring topology, the problem of finding a minimum-length sequence
of adjacent swaps needed to sort n objects is reduced to find a minimum-length permutation decomposition
of p−1 using the generating set of Sn corresponding to a given topology. The known permutation sorting
and permutation decomposition procedures were used to find a minimum-length sequence of adjacent swaps
needed to sort objects on graphs with line, star, complete, and ring topologies. The known diameters of
Cayley graphs were also used to find upper bounds of the minimum number of adjacent swaps needed to
sort objects on those graphs.

We discussed several kinds of Cayley graphs as state diagrams for sorting objects on graphs with line,
star, complete, and ring topologies. For example, the vertices of the bubble-sort graph BSn (resp. modified
bubble-sort graph MBSn) represent the possible arrangements of n objects on n vertices in L(n) (resp.
R(n)), where L(n) (resp. R(n)) denotes a graph of order n with a line topology (resp. ring topology). The
edges of BSn (resp. MBSn) correspond to swapping objects on adjacent vertices in L(n) (resp. R(n)). It
follows that the distance between two vertices in BSn (resp. MBSn) represents the minimum number of
adjacent swaps needed to reach from one arrangement of n objects to the other arrangement of n objects at
the vertices of L(n) (resp. R(n)).

We also discussed how adjacent swap-based sorting methods for graphs with several well-known topolo-
gies are applied to the combinatorics of genomic rearrangements. In particular, sorting a permutation (or
circular permutation) by reversals of length 2, sorting by prefix-exchanges, and sorting by block-interchanges
of length 1 can be simple applications of sorting objects on graphs with line, star, complete, and ring topolo-
gies by adjacent swaps.

To conclude, some possible future research directions are as follows:

• Although permutation sorting and permutation decomposition methods have been researched for the
last several decades [4, 21, 26, 28, 30–32, 61, 62, 93], further researches are needed to consider sorting
methods for graphs with more complex topologies (e.g. grid topology) and sorting methods for graphs
with certain topologies (e.g. line and ring topology) using swaps with swap distance at most k (k ≥ 2).

• More permutation group theory needs to be exploited to find a minimum-length generator sequence of
a permutation with respect to a certain generating set and its generated permutation group. This is
relevant, for example, to find a minimum-length sequence of adjacent swaps needed to sort objects on
some specific types of trees, which are not discussed in this paper.

18



• The problem of enumerating optimal solutions and the problem of finding a closed formula for the
total number of optimal solutions for an object sorting problem need also to be researched. They
were solved only for the small number of cases, such as finding the total number of ways to sort an
initial arrangement of n objects on n vertices in a graph of order n with a star topology by using the
minimum number of adjacent swaps (see [30] for finding the total number of minimal star factorizations
of a permutation).

• Finally, although we did not focus on approximation algorithms in this paper, the research on approx-
imation algorithms for the problem of finding the minimum number of adjacent swaps (or swaps with
swap distance at most k (k ≥ 2)) needed to sort objects on some types of graphs (not discussed in this
paper) can be a fruitful research direction. This research also includes finding an upper bound of the
number of adjacent swaps (or swaps with swap distance at most k (k ≥ 2)) needed to sort objects on
those graphs.
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